

Formation post-grade et continue FDH du 9.9.2025

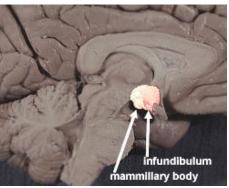
Introduction

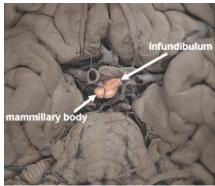
Chez les mammifères, l'activité du système reproducteur dépend de manière cruciale des réserves énergétiques environnementales.

- 1963 Kennedy et Mitra : relation entre développement pubertaire, prise alimentaire et prise pondérale
- 1974 Frisch et Mac Arthur Importance d'une masse corporelle optimale et cycles menstruels réguliers et ovulatoires (IMC 20 24 kg/m²)

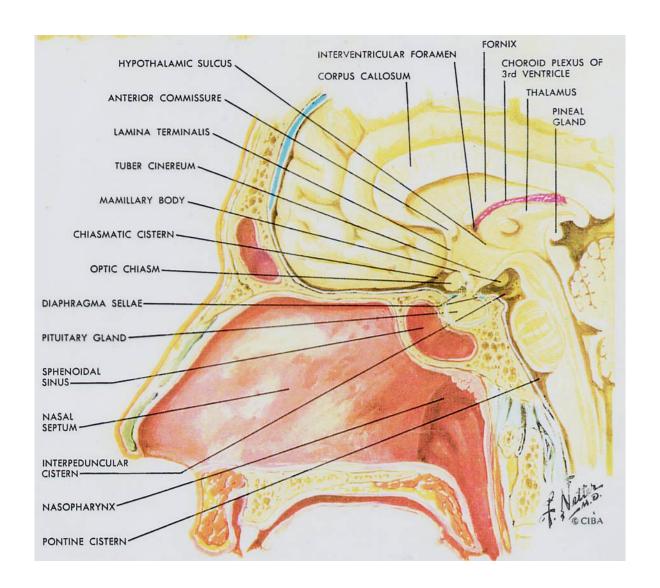
Nutrition inadéquate

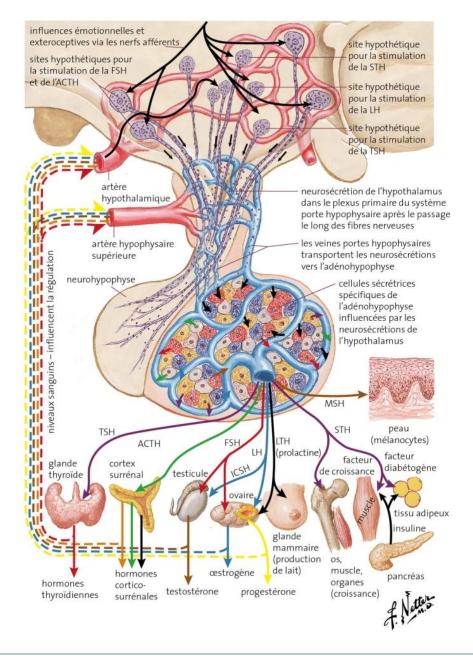
Reproduction inadéquate

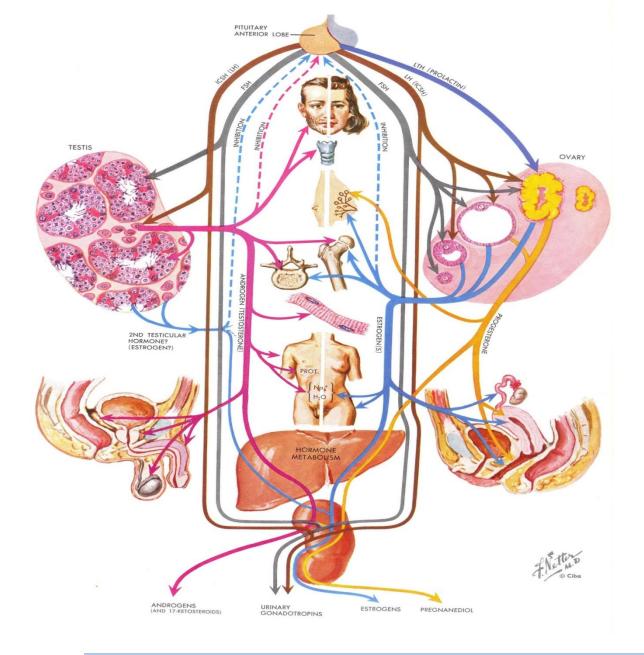


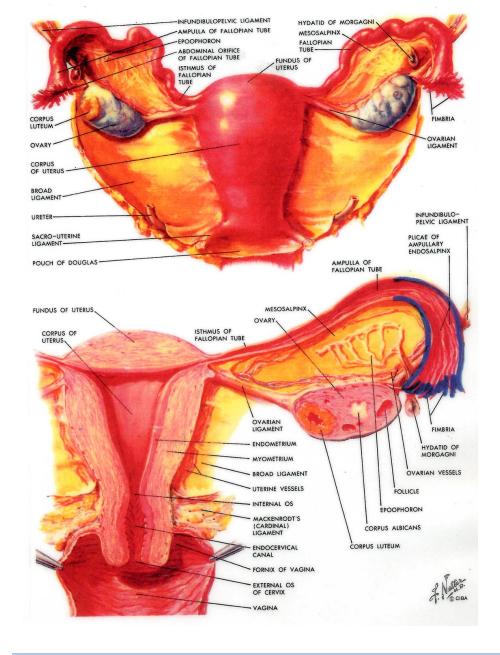

Reproduction adéquate

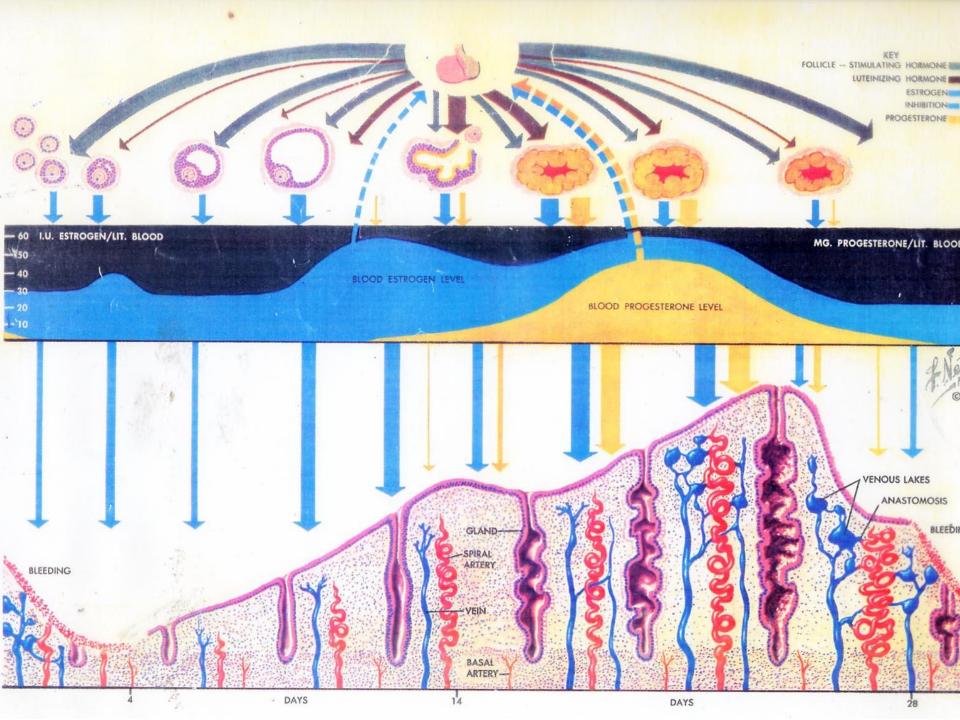
The hypothalamus assumes essential functions

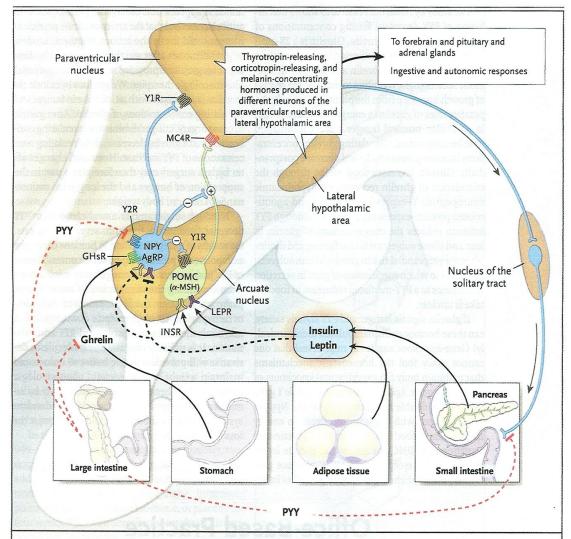




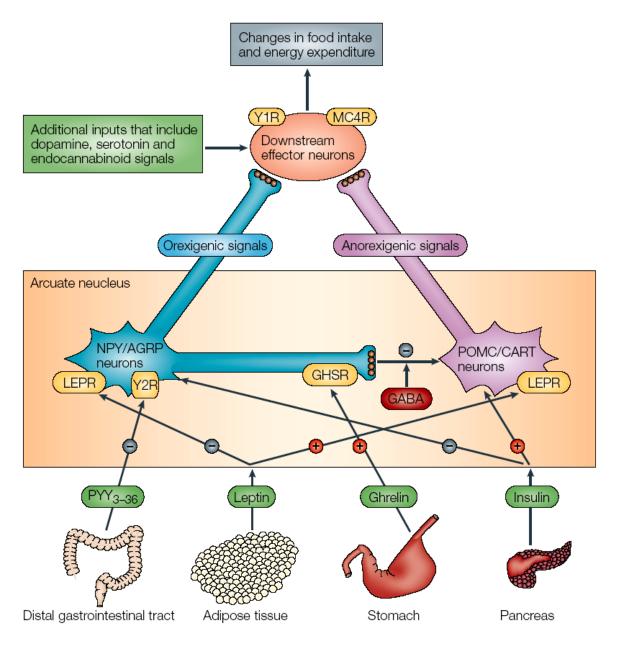








How the gut speeks to the brain and to the gonads ou Comment et pourquoi l'intestin parle au cerveau?



Interactions among Hormonal and Neural Pathways That Regulate Food Intake and Body-Fat Mass.

In this schematic diagram of the brain, the dashed lines indicate hormonal inhibitory effects, and the solid lines stimulatory effects. The paraventricular and arcuate nuclei each contain neurons that are capable of stimulating or inhibiting food intake. Y1R and Y2R denote the Y1 and Y2 subtypes of the neuropeptide Y (NPY) receptor, MC4R melanocortin 4 receptor, PYY peptide YY $_{3-36}$, GHsR growth hormone secretagogue receptor, AgRP agouti-related protein, POMC proopiomelanocortin, α -MSH α -melanocyte-stimulating protein, LEPR leptin receptor, and INSR insulin receptor.

Hormones métaboliques et reproduction

1. Insuline (pancréas)

- Reflète disponibilité énergétique
- Stimule GnRH via neurones Kisspeptine

2. Leptine (tissu adipeux)

- Indique réserves de graisse suffisantes
- Essentielle pour activer la fonction reproductive

3. Ghréline (estomac)

- Augmente pendant le jeûne
- Inhibe GnRH : reproduction freinée en cas de déficit énergétique

4. PYY (intestin)

- Hormone de satiété post-prandiale
- Module indirectement l'activité GnRH

Interactions entre métabolisme et reproduction

1/ La leptine

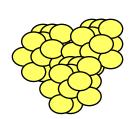
Modulateur de la satiété produit par le tissu adipeux

1994 Identification de la leptine chez les souris

obésité hyperphagique hypogonadisme hypothalamique

Signal physiologique de l'état nutritionnel de l'individu pour l'hypothalamus.

Individu maigre leptine ↓↓ Individu obèse leptine ↑↑


Tissus cible: hypothalamus

hypophyse

ovaires, testicules

Nutrition adéquate

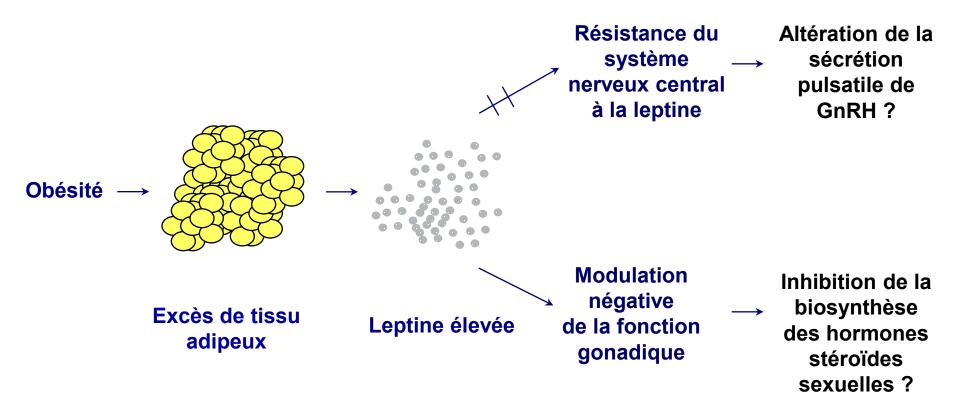
Composition corporelle physiologique

Leptine normale

Activation des neurones à GnRH

Masse grasse insuffisante

Leptine effondrée



Administration exogène de leptine

Restauration de l'activité des neurones à GnRH

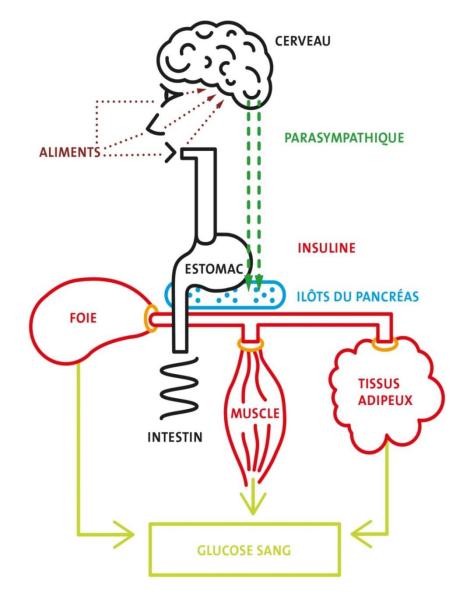
Interaction entre métabolisme et reproduction

2/ La Ghréline : quand l'estomac crie famine

- Estomac
- Hypothalamus
- Gonades

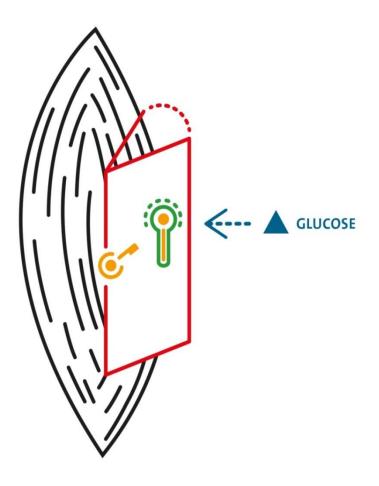
Orexigène, elle stimule l'appétit et ↑ le tissu adipeux

- Stimule la sécrétion de la GH (hormone de croissance) via l'activation des récepteurs hypothalamiques sécrétagoques de GH
- Régulation de la prise de nourriture, dépense énergétique et métabolisme périphérique


- → Ghréline inhibe la sécrétion de la LH en ↓ la pulsatilité du GnRH
- → Ghréline inhibe la sécrétion testiculaire de testostérone
- → Ghréline inhibe la sécrétion ovarienne d'androgènes d'où ↓ estrogènes

Interaction entre métabolisme et reproduction

3/ Insuline: l'hormone du métabolisme glucidique



IR = RÉCEPTEUR DE L'INSULINE

INSULINE ~ C- PEPTIDE

RÉCEPTEUR

INSULINO-RESISTANCE

• 25 % population USA et Nord-européenne

Perturbation génétique de l'effet de l'insuline sur les organes-cibles

↓ sensibilité à l'insuline

hyperinsulinisme

FACTEURS AGGRAVANT

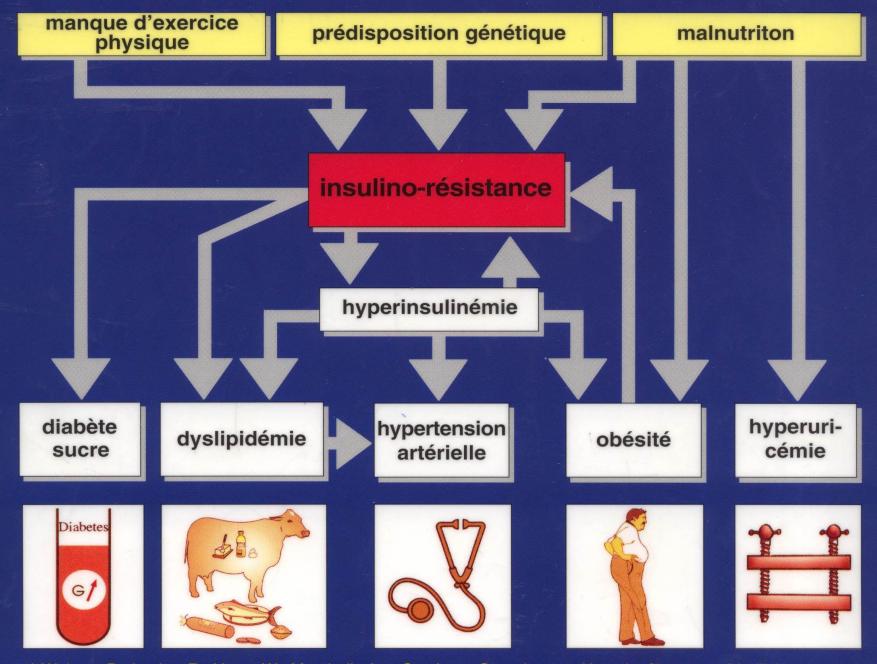
L'INSULINO-RESISTANCE ET L'HYPERINSULINISME

FACTEURS ENVIRONNEMENTAUX

- Les facteurs environnementaux peuvent révéler une prédisposition génétique:
- •<u>L'excès de glucides</u> aggrave l'intolérance au glucose du fait de l'insulinorésistance musculaire
- <u>L'excès de graisse</u> favorise le stockage
- •L'excès calorique et protéique favorise l'obésité et l'hyperuricémie
- •<u>La sédentarité</u> diminue l'oxydation du glucose par le muscle et favorise la prise pondérale
- •<u>Le stress</u>, les affections psychosomatiques, les dystonies neurovégétatives
- <u>Les médicaments</u>: psychotropes, contraceptifs oraux, diurétiques, β-bloquants, corticoïdes, androgènes, hormones de croissance, anabolisants, etc ...
- •La grossesse, la ménopause
- •L'âge

A Bon Entendeur, 20.01.15

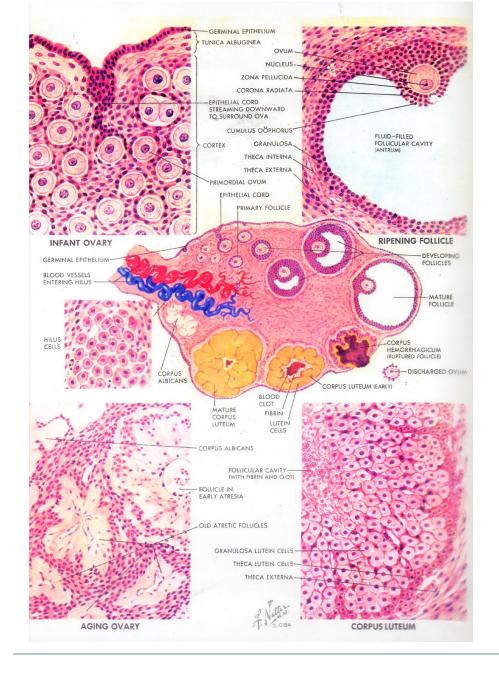
Sucre: l'amère vérité



Chez l'homme, le goût du sucre est inné. Cet atavisme qui a guidé nos ancêtres vers les aliments les plus énergétiques pendant des millénaires, permettant ainsi son évolution, est devenu aujourd'hui une véritable menace. L'excès de produits sucrés et gras dans notre alimentation quotidienne a provoqué une explosion du nombre de cas d'obésité et de ses maladies associées, dont le diabète de type 2.L'industrie agro-alimentaire porte une très lourde part de responsabilité dans la catastrophe sanitaire qui se profile en la matière: dans ce que nous avalons, le sucre est partout, ou presque, et souvent à notre insu.

Consommation de sucres en Suisse

3,2 kg/an en 1860 ; 37,7 kg/ an en 2021 de sucre total 40,1 kg/an de sucres ajoutés/j soit le double de la limite recommandée



1) Weisser B., Locher R., Vetter W.: Metabolisches Syndrom: Gemeinsame Ursache für unterschiedliche kardiovaskuläre Risikofaktoren?; Schweiz. Rundschau für Medizin, Praxis. <u>47</u> (82. Jahrgang): 1339-1343.

HISTORIQUE

•	1921	Le diabète des femmes à barbe
•	1922	Découverte de l'insuline
•	1947	Acanthosis nigricans
•	1968	Diabète insulinorésistant
•	1976	HAIR-AN type A, B
•	1980	SOPK et hyperinsulinisme
•	1989	Effets de la réduction de l'HI sur l'ovaire
•	1994	Metformine et SOPK
•	1998	Faible poids de naissance
•		Premature pubarche SOPK
•		Syndrome métabolique

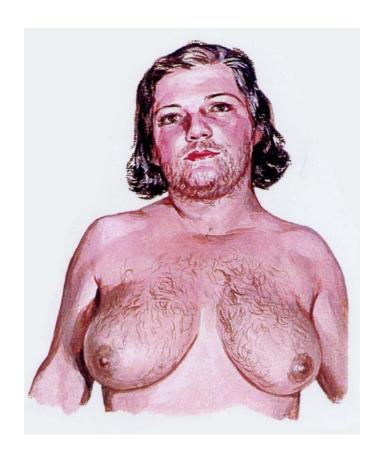
HYPERINSULINISME ET HYPERANDROGENIE

 Ovaires
 LH
 → Thèque
 → androgènes

 ↓
 ↓

 FSH
 → Granulosa
 → aromatase

 ↓
 _ estrogènes


↑ LH → ↑ androgènes

<u>Hyperinsulinisme</u>

- Secrétion inadéquate de LH (via GnRH)
- Amplifie l'action de la LH (ovarien)
- **→** Hyperandrogénie ovarienne fonctionnelle
- Anomalie de la folliculogenèse

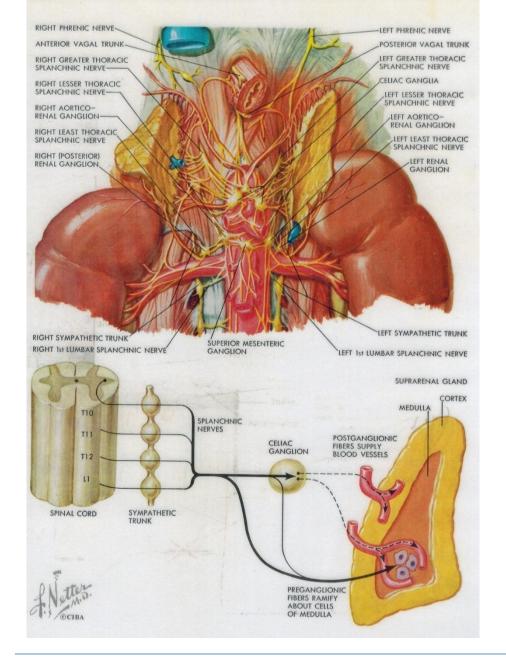
Définition du SOPK

<u>Hyperandrogénie</u>

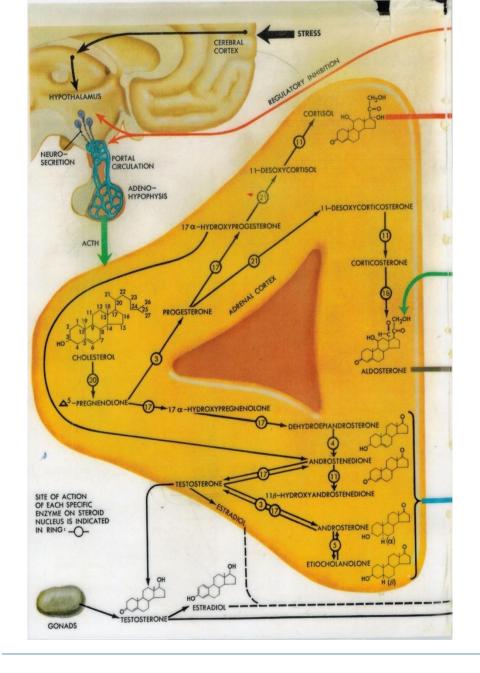
Clinique:

Hirsutisme, acné, alopécie androgénétique, répartition androïde de la graisse corporelle.

Biologique:


Elévation de la testostérone ou androstènedione

Hyperoestrogénie (E1, E2)


Anovulation chronique

Ovaires globuleux >12 follicules par ovaire, en collier Hypertrophie nette du stroma

HYPERINSULINISME ET HYPERANDROGENIE

- • production hépatique de SHBG → ↑ testostérone libre
- ↑ production DHEAS (△ 5) surrénalien

HYPERINSULINISME ET HYPEROESTROGENIE

↑ Aromatisation périphérique ⇒ ↑ oestrone

- ➤ Hyperandrogénie →
- Répartition des graisses (abdominale centrale)
- Hirsutisme, acné, alopécie androgénétique
- Dysovulation, oligo-aménorrhée, SOPK

- ➤ Hyperoestronémie →
- Gros seins ⇒ cancer
- Hyperplasie endomètre → cancer
- Gynécomastie chez l'homme

	R. K. 31 ans SOPK obèse		J. C. 31 an Obésité ha		P. A. 35 ans SOPK maigre	
Poids (kg)	87		117		54	
BMI	30		41		21	
Habitus	Corpulent mix	rte	Botero		Androïde	
	J2	J20	J2	J20	J2	J20
E2 pmol/l	193	244	100	134	119	137
Prog ng/l	-	0,6	-	0,5	-	0,1
LH U/I	8.0	-	2	-	13,3	-
FSH U/I	5,5	-	5	-	7,1	-
LH/FSH U/I	1,45	-	0,4	-	1,87	-
AMH pmol/l (12-38)	116	-	31	-	103	-
Testo. sal. (15-100)	163	-	48	-	121	-
Δ4 nmol/l (1,7-9,4)	10,7	-	4,5	-	9,9	-
DHEAS (2,6-9,3)	7,2	-	2,8	-	1,9	-
C-Peptide (300-780)	1'317	-	1'705	-	297	-
SHBG (30-80)	28	-	23	-	46	-
Prl (<30)	10,2	-	9,3	-	12,5	-
TSH (0,2-4)	1,35	-	1,29	-	1,54	-

HYPERINSULINISME: comment traiter?

Obèses : les faire maigrir !

Prise en charge diététique et amélioration de l'hygiène de vie

- Très basses calories → ↓ insulinémie

↓ testostérone libre

↑ SHBG

- Programme de style de vie, perte de poids progressive, exercice physique

Faut pas rêver mais: 80 % de cycles régularisés, 20 % de grossesse spontanée

- Exercice physique ↑ utilisation du glucose

↑ insulinosensibilité

↑ expression de Glut 4

- Alimentation selon IG et protéinée | rapide de l'insuline

Moi, j'aime bien ↓ testostérone libre

↑ SHBG

Drogue insulino-sensibilisante

<u>METFORMINE</u> ↓ production hépatique glucose

↑ insulino-sensibilité périphérique

↓ hyperinsulinisme

1000-1500 mg/j. ↓ insulinémie à jeun

↓ testostérone libre

↑ SHBG

<u>FOL-INO</u> (Myo-inositol + D-chiro-inositol) : améliore la sensibilité à l'insuline

Induction de l'ovulation améliorée sous Metformine et FOL-INO

Incrétines et multi-agonistes

GIP (cellules K)

GLP-1 (cellules L) Glucagon (cellules α)

- ↑ Insuline (glucose-dépendant)
- 个 Insuline
- **↓** Glucagon
- ↓ Vidange gastrique
- 个 Satiété

↑ Dépense énergétique (triple agoniste)

Agoniste du GLP-1 (Ozempic et Wegovy)

Agonistes combinés GIP + GLP-1 (Mounjaro)

Triple agonistes (GIP + GLP-1 + Glucagon)

→ ↓ HbA1c, ↓ poids, bénéfices CV

Hormones métaboliques et reproduction

1. Insuline (pancréas)

- Reflète disponibilité énergétique
- Stimule GnRH via neurones Kisspeptine

2. Leptine (tissu adipeux)

- Indique réserves de graisse suffisantes
- Essentielle pour activer la fonction reproductive

3. Ghréline (estomac)

- Augmente pendant le jeûne
- Inhibe GnRH : reproduction freinée en cas de déficit énergétique

4. PYY (intestin)

- Hormone de satiété post-prandiale
- Module indirectement l'activité GnRH

Télécopie à l'attention du Docteur : WOEBER

Le Journal Faxé de l'Endocrinologue

Endocrinologie - Diabétologie - Maladies métaboliques

Comiti 4. riduction: J.R. Attali J. Bringer J.M. Brogard G. Cathelineau B. Charbonnel P. Freychet Fl. Froguel H. Cin P. J. Culllausseau J. Hanoune J.-N. Hugues J.M. Kuhn J. Leclere M.Marre Fl. Moulin Fl. Fassa M. Pugeat G. Ribot F. Rochiccioli H. Saltiel D. Simon Ch. Sultan A. Tabarin Ch. Thivolet J. Tourniaire B. Vialettes B. Villatte - Cathelineau J. L. Wemeau

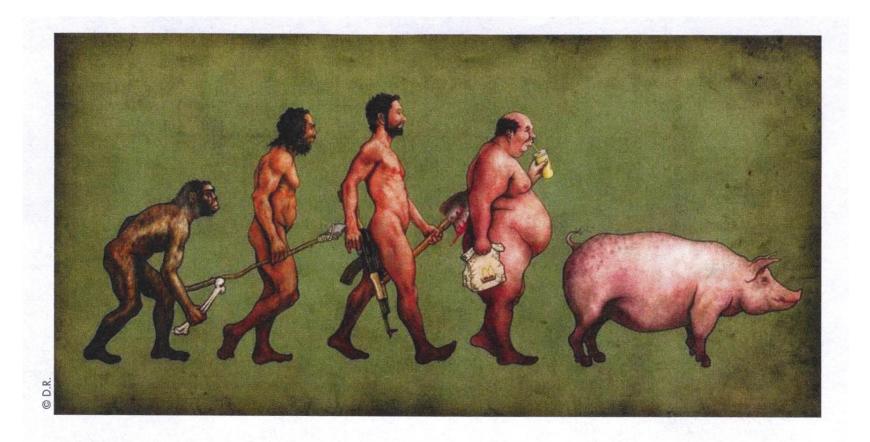
COMPORTEMENT ALIMENTAIRE ET REPRODUCTION : LÀ AUSSI, LA FEMME EST PLUS SENSIBLE QUE L'HOMME !

Le profond impact de l'équilibre nutritionnel et pondéral sur la fonction de reproduction est illustré par de nombreuses données expérimentales et cliniques. L'influence des modifications quantitatives et qualitatives de l'apport alimentaire sur la fonction ovarienne se précise. La part relative des facteurs de sensibilisation (stress et exercice) modulant l'effet de la nutrition sur la reproduction est mieux définie.

Ainsi, les femelles de singe rhésus, soumises à un stress induit par le changement de leur environnement habituel, ont 3 à 4 fois moins de troubles du cycle que celles qui sont de surcroît exposées à une réduction de 20% de leurs apports caloriques et à un exercice physique quotidien (1). Ces faits doivent être rapprochés des récentes observations cliniques qui montrent qu'une alimentation sélectivement restreinte en matières grasses (-20% par rapport au groupe témoin) est observée chez les femmes non sportives, de poids normal et en aménorrhée hypothalamique (2 - 4). Ces femmes sont aussi soumises à un niveau élevé de stress caractérisé par une personnalité perfectionniste, un souci de la performance et une difficulté à s'adapter aux contraintes quotidiennes (2).

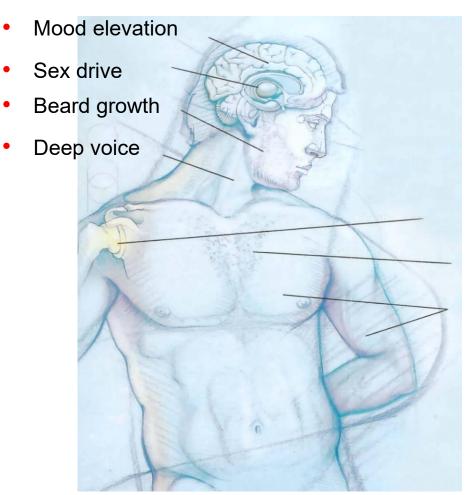
Une étude récente (5) a permis de comparer, chez l'homme et la equilibre (4) Kcal/kg masse magre/jour pendant 5 jours). Huit comparées à 9 hommes jeunes et en bonne santé. L'évaluation de la composition corporelle montrait une masse grasse de $25 \pm 2,5\%$ chez la femme et de $15 \pm 1,1\%$ chez l'homme. L'étude de la pulsatilité de la LH a été évaluée au 5° jour du traitement (entre le 9° et le 12° jour du cycle chez la femme) sur des prélèvements sanguins effectués toutes les dix minutes pendant 24 heures. Il n'a été repéré aucune modification significative des concentrations plasmatiques de testostérone, ni de l'amplitude et

de la fréquence des pulses de LH chez l'homme. À l'opposé, une réduction significative de l'æstradiol (-20%), de la fréquence et de l'amplitude des pulses de LH a été observée chez les femmes ainsi étudiées. Les concentrations plasmatiques moyennes de leptine, évaluées sur 24 heures, diminuent plus chez la femme (-62%) que chez l'homme (-35%; p < 0,002). Ces résultats suggèrent que la femme requiert un apport alimentaire supérieur à celui de l'homme pour maintenir une pulsatilité physiologique de LH. Parmi les nombreux signaux métaboliques, stéroïdiens, peptidiques et neurohomonaux pouvant intervenir au niveau central et ovarien pour moduler la fonction de reproduction, la leptine pourrait jouer un rôle essentiel. En effet, l'évaluation sur 24 h de la glycémie, l'insulinémie et l'IGF-1, l'IGFBP-1, la

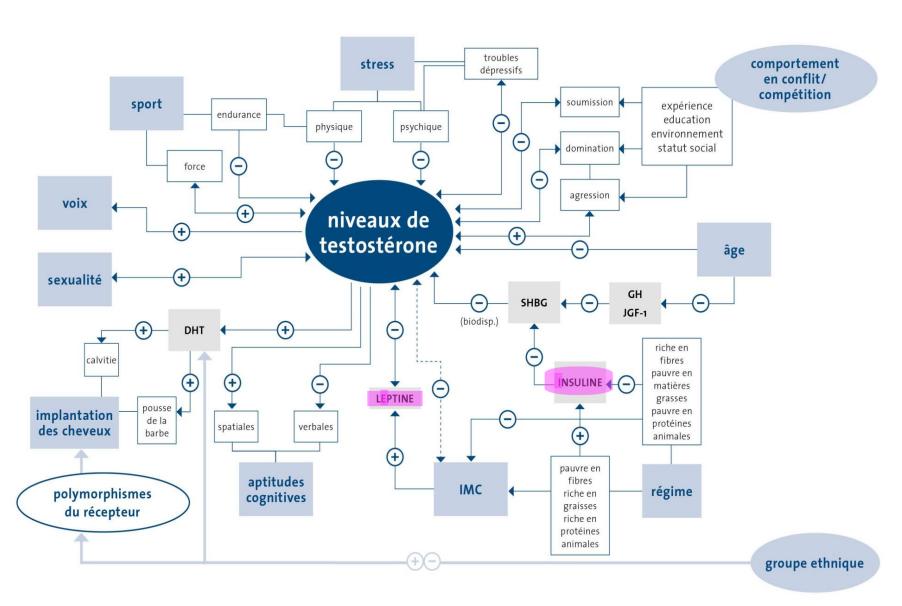

la LH observées exclusivement chez les femmes.

En résumé, indépendamment des réserves adipocytaires, une réduction modérée des apports caloriques, prolongée ou intense et de courte durée influence défavorablement la fonction gonadotrope chez la femme. L'approche clinique et thérapeutique des anomalies de l'ovulation et de la fertilité doit tenir le plus grand compte de ces observations en raison de la fréquence croissante des conduites alimentaires alternant restrictions et compulsions chez les jeunes femmes des pays industrialisés.

Le 3 juillet 1998


ll. ll. 8.98

Cardio... logique

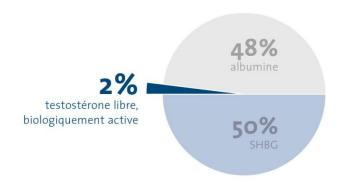

WHY DO YOU NEED TESTOSTERONE?

- Strong bones
- Body hair
- Increased muscle mass

- Erectile function
- Sperm production

Testostérone plasmatique totale

Biodisponible		Non biodisponible	
libre ↓	liée à l'albumine	liée à la SHBG ↓	
2%	48%	50%	


Testostérone libre = biologiquement active

Testostérone liée à l'albumine

- liaison non spécifique, rapidement biodisponible

Testostérone liée à la SHBG

- liaison spécifique, non biodisponible

Testotérone plasmatique totale = 3 testostérones

Variations de la SHBG

Augmentation ↑	Diminution ↓		
 - âge - hypoandrogénie - œstrogènes - hormones thyroïdiennes - anti-épileptiques 	 – obésité – hyperandrogénie – hyperinsulinisme – insuline, IgF1, hGH – corticoïdes – progestatifs 		

Cette liste ne prétend pas être exhaustive.

M. Dupont, né le 20.03.1970, 40 ans, chauffeur de taxi, sédentaire, alimentation riche en pain, fromage, charcuterie, sandwichs à midi, pauvre en fruits et légumes, obèse (IMC32kg/m²), avec adiposité abdominale centrale (tour de taille 117cm(>102cm)), poilu, chauve a une **asthénotératozoospermie modérée**.

Spermogramme	
Volume ml (2-6)	3.5
pH (7.2-8.0)	7.5
Concentration mio/ml (> 15)	20,2
Formes mobiles %(> 35)	22
Progressifs rapides % (> 32)	10
Formes vitales % (> 50)	35
Formes normales (> 4)	5
Paramètres métaboliques	Sp.

Examens de laboratoire

FSH 4,8 U/L (N < 10), LH **2,1** U/I (N 1-8), Testostérone plasmatique **8,0** pmol/I (N 8-26), Testostérone salivaire 256 pmol/I (N 210-530), C-Peptide (insuline) **1'400** pmol/I (N 300-780), SHBG **16** nmol/I (N 16-65), Prolactine et TSH normales.

GPT **85** (ALAT) U/I (N < 40), Gamma-GT 55 U/I (N < 60), Phosphatase alcaline 147 U/I (N < 190).

Chol. total 5,6 mmol/l (N < 5,7), chol. HDL **0,8** mmol/l (N > 1,2), chol./HDL **7,0** (N < 5), chol. LDL **4,5** mmol/l (N < 3,4), Triglycérides **3,3** mmol/l (N < 1,8),

Acide urique **442** µmol/l (N 150-420)

Glucose à jeun **5,6** mmol/l (N 4,5-5,5), C-Peptide (insuline) **1'400** pmol/l (N 300-780), Index HOMA **4,2** (N < 2,44).

Fer sérique 20,5 μmol/l (N 12,5-25,0), Ferritine **450** μg/l (N 50-350).

M Dupont a un **syndrome métabolique** avec habitus corpulent, obésité, adiposité abdominale centrale, **hyperinsulinisme** sans anomalie de la glycémie, dyslipidémie, discrète stéatose hépatique non alcoolique, tendance à l'hypertension artérielle et à l'hyperuricémie. L'hyperinsulinisme s'accompagne d'une **SHBG basse** d'où valeur basse de la testostérone plasmatique mais normale de la testostérone salivaire soit une **hyperandrogénie périphérique** avec pilosité riche, calvitie.

Freinage de la LH par l'hyperandrogénie, l'hyperinsulinisme, l'hyperleptinémie, etc.

Au niveau testiculaire, perturbation de la spermatogenése et de la fonction des cellules de Sertoli d'où l'asthénotératozoospermie sans anomalie de la concentration.

Alimentation riche en pain, fromage, charcuterie, sandwichs à midi, pauvre en fruits et légumes d'où au niveau des cellules de Sertoli, accumulation des radicaux libres toxiques.

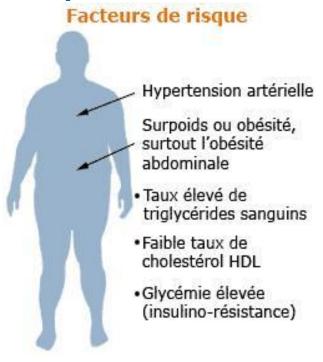
Traitement:

Modifier ses habitudes alimentaires, augmenter son activité physique et favoriser les fruits et légumes que l'on peut remplacer par 1 cp d'ACE-Selen + Zinc. Si nécessaire, prescription de Metformine et selon, d'hypolipémiants.

Alimentation et reproduction

Evaluation du métabolisme glucidique

	<u>24.10.17</u> <u>p-p</u> (tartine au miel)	<u>22.02.18</u> <u>A jeun</u>	<u>9.11.18</u> <u>A jeun</u>	
cm	173	173	173	
Poids kg	81	69,5	69	
Glucose	6,2 (4.5-7.0)	5,6 (4.5-5.5)	5,7 (4.5-5.5)	
C-Peptide (Insuline)	1'822 (300-1'000)	326 (300-780)	` '	mol/l


Evaluation de la fonction gonadique

	<u>24.10.17</u>	22.02.18	<u>9.11.18</u>		
Testostérone totale	12,9	18,8	21,07	nmol/l	(12-38)
SHBG	24	50	53	nmol/l	(30-71)
Testo. libre calculée	288	291	318	pmol/l	(91-579)
Testo. bio- disponible	7,52	7,58	8,28	nmol/l	(2.1-13.6)

Evolution des spermogrammes	22.01.16	<u>26.10.17</u>	05.02.18
	<u>Fertas</u>	<u>Fertas</u>	<u>Fertas</u>
Délai d'abstinence en jours	4,4	3	3
Volume ml (N 2-6)	2,2	1	3
pH (N 7,2-8,0)	7,2	7,2	7,5
Concentration mio/ml (N > 15)	0,4	5,5	41,4
Nombre total mio (N > 40)	0,880	5,5	124
Mobilité totale % (N > 40)	0	11	23
Mobilité progressive % (N > 32)	0	8,5	12,6

Dans une étude clinique, 43 % des patients atteints de dysfonction érectile souffraient d'un syndrome métabolique.

« Bébé vient en mangeant juste »

Et en faisant de l'exercice

Merci de votre attention

